17-AAG|cas 75747-14-7|DC Chemicals
17-AAG(NSC 330507; CP 127374) is a potent HSP90 inhibitor with IC50 of 5 nM, having a 100-fold higher binding affinity for HSP90 derived from tumour cells than HSP90 from normal cells.
IC50 Value: 5 nM
Target: HSP90
in vitro: 17-AAG, an analog of geldanamycin, exhibits greater than 100 times higher binding affinity for Hsp90 derived from HER-2-overexpressing cancer cells (BT474, N87, SKOV3 and SKBR3) or BT474 breast carcinoma cells with IC50 values of 5-6 nM.
Product Name: 17-AAG|Cat No: DC9482|Cas: 75747-14-7|Molecule Formular: C31H43N3O8|Molecule Weight: 585.6884|Other names: 17-AAG
17-AAG(NSC 330507; CP 127374) is a potent HSP90 inhibitor with IC50 of 5 nM, having a 100-fold higher binding affinity for HSP90 derived from tumour cells than HSP90 from normal cells.
in vitro: 17-AAG, an analog of geldanamycin, exhibits greater than 100 times higher binding affinity for Hsp90 derived from HER-2-overexpressing cancer cells (BT474, N87, SKOV3 and SKBR3) or BT474 breast carcinoma cells with IC50 values of 5-6 nM. 17-AAG causes the degradation of HER2, HER3, Akt, and both mutant and wild-type androgen receptor (AR), leading to the RB-dependent G1 growth arrest of prostate cancer cells such as LNCaP, LAPC-4, DU-145, and PC-3 with IC50 values of 25-45 nM. In addition to inducing apoptosis of Ba/F3 cells transformed with wild-type BCR-ABL with an IC50 of 5.2 μM, 17-AAG has the ability to induce apoptosis of cells transformed with imatinib mesylate-resistant T315I and E255K BCR-ABL mutants with IC50 values of 2.3 μM and 1.0 μM, respectively, by inducing the degradation of both wild-type BCR-ABL protein and mutants.
in vivo: 17-AAG displays significantly higher binding affinity for Hsp90 from 3T3-src, B16 or CT26 xenografts in nude mice with IC50 values of 8-35 nM as compared with that from the normal tissues with IC50 values of 200-600 nM. Administration of 17-AAG (~50 mg/kg) causes significant decline in AR, HER2, HER3, and Akt expression in a dose-dependent manner with >50% decline at dose of 50 mg/kg, resulting in the dose-dependent inhibition of androgen-dependent (CWR22) and -independent (CWR22R and CWRSA6) prostate cancer xenografts growth by 67%, 80% and 68% at dose of 50 mg/kg, respectively.
For research only, not for human use!
没有评论:
发表评论